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Abstract 

The integration of lightweight Internet of Things (IoT) nodes into next-generation 5G and 6G 

networks via Power Line Communication (PLC) presents new challenges in routing 

reliability, path loss minimization, and computational efficiency. In response, this study 

proposes a novel lightweight multi-hop routing protocol (LMRP) tailored for PLC-based 

edge networks. Implemented within a scalable, multilayer system architecture—comprising a 

smart power pool, edge automation, fog latency, and cloud resilience layers—the protocol 

optimizes throughput and signal stability while reducing path loss and node failure. Through 

a series of empirical testbed deployments involving TelosB nodes, Raspberry Pi gateways, 

and multiple optimization strategies (GA, PSO, and LMRP), the proposed scheme 

demonstrates superior performance in terms of energy efficiency, latency, and reliability. In 

all three test locations, LMRP achieved a minimum of 32.62% path loss mitigation and 

outperformed conventional approaches with a 76.3% routing efficiency gain. These results 

validate the effectiveness of LMRP in real-world edge computing scenarios and highlight its 

potential for applications in driverless transport, smart grids, and industrial automation. 
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1. Introduction 

Edge computing has emerged as a pivotal enabler of real-time data processing in applications 

such as autonomous vehicles, smart grids, and industrial automation. These domains 

increasingly rely on the Internet of Things (IoT) to deliver reliable and low-latency services. 

Among the available communication technologies, Power Line Communication (PLC) stands 

out as a cost-effective and infrastructure-ready solution, leveraging existing electrical wiring 

for data transmission. 

Standardized by ITU-T G.9903, PLC enables digital communication over power lines and 

supports IPv6 Routing Protocols for Low-power and Lossy Networks (RPL). However, while 

RPL offers a foundation for low-power mesh networking, it lacks dynamic optimization for 

path loss (PL), signal reliability, and congestion control—challenges that are exacerbated in 

multi-hop IoT networks operating at the network edge. 

The demand for scalable, resilient, and efficient edge communication is further intensified by 

the increasing deployment of narrowband (NB-PLC) and broadband (BB-PLC) systems. In 

particular, In-band Full Duplex (IBFD) transmission has been proposed to enhance spectral 

efficiency and data throughput. However, IBFD also introduces critical challenges—most 

notably, high path loss at millimeter wave frequencies (e.g., 28 GHz) and increased energy 

drain, particularly in high-density IoT deployments. 

 

Existing routing strategies often fail to account for the dynamic and heterogeneous 

characteristics of edge environments. Approaches such as Emergency RPL (EM-RPL), 

PriNergy-RPL, and CQARPL have addressed QoS, delay, and energy efficiency, yet few 

incorporate path loss as a central optimization criterion. Furthermore, most strategies 

overlook real-time adaptivity, energy constraints, and the need for lightweight execution at 

the device level. 

 

To address these gaps, this paper introduces a Scalable Power Line Communication Network 

(SPLCN) architecture incorporating a Lightweight Multi-Hop Routing Protocol (LMRP).  

 

This routing protocol is specifically designed to optimize: 

● Path loss mitigation through deterministic multi-hop strategies 
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● Routing cost via minimum-cost flow problem formulation 

● Energy efficiency with battery-aware transmission models 

● Throughput and reliability across heterogeneous edge devices 

● Layered orchestration from edge sensors to cloud sinks 

 

The proposed framework integrates optimized routing with lightweight IoT protocols such as 

CoAP, MQTT, XMPP, and AMQP, enabling resilient and adaptive edge communication. 

Evaluations are conducted via real-world testbeds using TelosB nodes and Raspberry Pi 

gateways. Comparative analyses with Genetic Algorithms (GA) and Particle Swarm 

Optimization (PSO) validate the performance benefits of LMRP across metrics including 

throughput, latency, reliability, and computational complexity. 
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2. System Architecture and Theoretical Model 

2.1 Overview of the SPLCN Framework 

The Scalable Power Line Communication Network (SPLCN) proposed in this work is a 

four-tiered architecture designed to enable resilient, lightweight data routing from edge IoT 

devices to cloud services over PLC channels. This architecture integrates full-duplex 

broadband PLC (BB-PLC) and IoT edge computing to support high-throughput, low-latency, 

and energy-efficient communication.  

It is composed of the following interconnected layers: 

1. Smart Power Pool Isolation Layer (SPPIL): Handles power-aware node orchestration 

and supports energy-neutral IoT clusters. 

2. Edge Automation Layer (EAL): Facilitates local decision-making and signal routing 

through multi-hop paths. 

3. Fog Latency Layer (FLL): Manages intermediate processing and provides latency 

buffering for time-sensitive data streams. 

4. Cloud Core Resilient Layer (CCRL): Ensures global coordination and fault-tolerant 

service provisioning through scalable cloud infrastructure. 

 

This multilayer design is underpinned by a full-duplex 2×2 MIMO configuration, with 

simultaneous transmission and reception at edge nodes. The PLC channel characteristics and 

interference effects between transceivers are modeled to reflect real-world network 

constraints, particularly those at the edge of distributed systems. 

 

2.2 Problem Formulation: Minimum Cost Flow 

To identify optimal routing paths in the SPLCN, the routing challenge is formalized as a 

Minimum Cost Flow Problem (MCFP) over a hybrid graph G=(V,E)G = (V, E)G=(V,E), 

where: 

● VVV: Set of edge nodes and cluster heads 

● EEE: Set of directed communication links 

● b(e),c(e)b(e), c(e)b(e),c(e): Link capacity bounds 

● y(e)y(e)y(e): Cost function per transmission unit 

● d(v)d(v)d(v): Demand or supply at node vvv 

The objective is to determine a feasible flow f:E→Kf: E \rightarrow \mathbb{K}f:E→K such 

that: 

● Capacity and demand constraints are satisfied 



 

1497                                                          JNAO Vol. 16, Issue. 1:  2025 
 

 

● The total cost ∑e∈Ey(e)f(e)\sum_{e \in E} y(e) f(e)∑e∈Ey(e)f(e) is minimized 

This optimization supports unicast, multicast, and broadcast transmissions, and 

accommodates both wireless and PLC-specific (wired) communication links. The formulation 

enables resilience by allowing time-stamped adaptive routing that responds to real-time 

network dynamics, such as link degradation or node failure. 

 

2.3 K-Shortest Path Routing 

To further enhance routing reliability and minimize path loss, the K-Shortest Paths (KSP) 

algorithm is used. This method iteratively finds the K most efficient paths between source 

and destination nodes using a deviation-based modification of Dijkstra’s algorithm. Each path 

is selected based on the following criteria: 

● Shortest unvisited path from source to sink 

● Distinctness from previously selected paths 

● Loop avoidance through node and edge exclusion 

 

This multi-path routing approach ensures robustness against impulsive noise and transient 

node unavailability—common issues in lossy edge networks. It also allows distributed edge 

nodes to dynamically reroute data with minimal computational overhead. 

 

2.4 Node Energy Optimization 

Given the battery-operated nature of edge IoT nodes, energy efficiency is paramount. The 

node’s energy budget is defined as EcE_cEc, and its lifetime during data transmission is 

derived as: 

Li=Ec∑(i,j)∈EPtx(i,j)+∑(j,i)∈EPrx(j,i)L_i = \frac{E_c}{\sum_{(i,j)\in E} P_{tx}(i,j) + 

\sum_{(j,i)\in E} P_{rx}(j,i)}Li=∑(i,j)∈EPtx(i,j)+∑(j,i)∈EPrx(j,i)Ec 

Where: 

● Ptx(i,j)P_{tx}(i,j)Ptx(i,j): Transmission power from node iii to jjj 

● Prx(j,i)P_{rx}(j,i)Prx(j,i): Reception power at node iii from jjj 

The optimization problem is formalized as a mixed-integer convex program with objectives 

to: 

● Maximize network lifetime 

● Maintain acceptable latency 
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● Respect energy capacity and signal strength constraints 

 

This formulation enables energy-aware scheduling that balances load across nodes and 

prevents premature node depletion—a critical requirement in scalable PLC-based 

deployments. 

 

2.5 Layered Link and Resource Allocation 

The SPLCN architecture supports recursive routing optimization across its hierarchical 

layers. Link capacities and routing decisions in lower layers (e.g., edge) influence upstream 

layers (e.g., Fog and Cloud). Thus, the optimization process includes: 

● Aggregation of flow indicators xplx^l_pxpl across layer lll 

● Demand-driven allocation of resources yely^l_eyel 

● Forwarding rules that match load constraints between adjacent layers 

 

This layered flow coordination is essential for maintaining end-to-end QoS, especially under 

dynamic workloads and network topologies. The resulting Lightweight Multi-Hop Routing 

Protocol (LMRP) employs an auto-scaling mechanism that adapts transmission routes based 

on node density, workload intensity, and residual energy. 

 

2.6 Analytical Model of Path Loss 

Path loss (PL) in PLC-IoT environments is modeled using both free-space and two-ray 

propagation models. The general form is: 

PL(d)=PL(d0)+10nlog⁡10(dd0)+XσPL(d) = PL(d_0) + 10n \log_{10}\left(\frac{d}{d_0} 

\right) + X_\sigmaPL(d)=PL(d0)+10nlog10(d0d)+Xσ 

Where: 

● ddd: Distance between transmitter and receiver 

● d0d_0d0: Reference distance 

● nnn: Path loss exponent (empirically derived) 

● XσX_\sigmaXσ: Zero-mean Gaussian random variable (shadow fading) 

 

Empirical values of nnn were found to be 2.67 (indoor) and 2.77 (outdoor), confirming the 

impact of environmental characteristics on signal attenuation. The model serves as a 

foundation for predicting energy expenditure, optimizing antenna gains, and fine-tuning node 

placement. 
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3. Experimental Testbed and Software Implementation 

3.1 Testbed Setup 

To evaluate the proposed Lightweight Multi-Hop Routing Protocol (LMRP) within a real-

world edge networking context, an empirical testbed was designed using TelosB IoT sensor 

nodes and Raspberry Pi (RPI) gateways. The testbed was deployed across indoor and outdoor 

environments at three distinct locations within the Federal University of Technology Owerri 

(FUTO), Nigeria. 

 

The TelosB nodes are low-power IEEE 802.15.4-compliant embedded devices featuring: 

● MSP430 microcontroller (10 KB RAM, 48 KB flash) 

● CC2420 radio transceiver operating at 2.4 GHz 

● Energy monitoring capabilities via built-in sensors 

 

These devices were interfaced with RPI units, configured as Fog gateways for data 

aggregation and logging. Each RPI operates on a quad-core ARM processor with 1 GB RAM 

and Linux OS, and serves as a sink node for PL measurements and routing data logs. The 

RPIs ran TinyOS for low-level control and hosted a lightweight Java-based GUI for 

visualizing network telemetry. 

 

The outdoor testbed (Fig. 3 in original text) facilitated free-space propagation measurements, 

while the indoor scenario (Fig. 4) allowed for non-line-of-sight (NLOS) PL testing. All nodes 

were powered by AA batteries with a transmission power setting of 0 dBm and a default 

update frequency of one packet every 5 seconds. 

 

3.2 Software Stack and Data Collection 

The TelosB platform was programmed using NesC, a component-based language designed 

for networked embedded systems. The experimental configuration involved the following 

software components: 

● Makefile: For compilation and linking of binaries 

● Module file: Contained functional logic for data sensing and radio control 

● Configuration file: Defined interfaces and component wiring 

● Header file: Contained global definitions and message structures 
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To conserve energy, radio modules were disabled immediately after each data transmission. 

Sensor readings—such as temperature, humidity, light intensity, and voltage—were encoded 

in SI units before transmission. Each transmission packet was digitally signed and 

acknowledged to ensure reliability. 

 

A Java-based virtual GUI (Fig. 5) was developed to display: 

● Real-time sensor readings 

● Path loss computations from received signal strength indicators (RSSI) 

● Energy depletion trends over time 

The Java interface enabled data logging to CSV files for subsequent analysis in MATLAB 

and Excel. 

 

3.3 Radio Energy Model 

Energy consumption for transmission and reception was calculated based on the first-order 

radio model: 

Etx=μ⋅(Ae+αt⋅dn),Erx=μ⋅AeE_{tx} = \mu \cdot (A_e + \alpha_t \cdot d^n), \quad E_{rx} = 

\mu \cdot A_eEtx=μ⋅(Ae+αt⋅dn),Erx=μ⋅Ae 

Where: 

● μ\muμ: Number of bits per packet 

● AeA_eAe: Base energy consumption per bit (electronics) 

● αt\alpha_tαt: Energy per bit per mnm^nmn (amplification) 

● ddd: Transmission distance 

● nnn: Path loss exponent (empirically 2–4) 

 

This model allowed for dynamic estimation of node battery depletion. The crossover 

distance—the threshold at which multi-hop transmission becomes more energy-efficient than 

direct transmission—was identified at approximately 87.6 meters for the given test 

conditions. 

 

3.4 Energy Depletion Tracking 

Battery voltage levels were sampled periodically to assess energy consumption across time. 

Table 5 in the original text presents the depletion profiles of four representative TelosB nodes 
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over 26 minutes. On average, a gradual linear decay in voltage was observed, indicating 

steady energy usage during routing. 

The energy expenditure was further characterized based on transmission frequency and data 

payload. The results confirmed that multi-hop communication yields better energy efficiency, 

particularly when inter-node distances are normalized and routing decisions follow the 

optimized shortest-path policy. 

 

3.5 Communication Protocol Integration 

The experimental framework incorporated a set of lightweight application-layer protocols 

commonly used in IoT: 

● CoAP (Constrained Application Protocol) for RESTful message exchange 

● MQTT (Message Queuing Telemetry Transport) for event-driven pub/sub messaging 

● AMQP (Advanced Message Queuing Protocol) for robust middleware communication 

● XMPP (Extensible Messaging and Presence Protocol) for low-latency signaling 

● RESTful API for HTTP-based remote data access 

 

These protocols were selectively activated during performance comparisons with the LMRP 

to examine throughput, latency, reliability, and overhead. Each protocol’s ability to handle 

impulsive channel noise and sustain real-time edge-Fog data transfer was evaluated. 

 

3.6 PL Measurement and Validation Methodology 

Path loss (PL) was calculated using empirical measurements of transmitted and received 

signal strength: 

PL(dB)=Pt(dBm)−Pr(dBm)PL(dB) = P_t(dBm) - P_r(dBm)PL(dB)=Pt(dBm)−Pr(dBm) 

where PtP_tPt and PrP_rPr denote the transmit and receive powers, respectively. 

Three TelosB nodes were placed at varying distances (1m to 60m) from the RPI sink to 

collect PL data. Both experimental and theoretically predicted PL values were tabulated 

(Tables 2–4 in original) and compared using linear regression to estimate the path loss 

exponent nnn. These values were used to fine-tune the routing algorithm’s distance-weighted 

cost functions. 

 

4. Result Analysis and Comparative Evaluation 

4.1 Path Loss Mitigation Analysis 

Empirical evaluations of path loss (PL) were conducted across three test locations: 
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● L1: Sonic Fast Food (Outdoor) 

● L2: Old SEET Complex 

● L3: New SEET Complex 

 

In each location, TelosB nodes were deployed at fixed intervals ranging from 1 to 60 meters. 

The average PL values were collected and compared against theoretical predictions derived 

from the free-space and two-ray propagation models. As shown in Tables 2–4 of the original 

dataset, experimental PL closely matched model-based forecasts with minimal deviation—

validating the accuracy of the adopted path loss exponent (2.67 indoor, 2.77 outdoor). 

 

To assess optimization effectiveness, three routing strategies were tested: 

● Genetic Algorithm (GA) 

● Particle Swarm Optimization (PSO) 

● Proposed Lightweight Multi-Hop Routing Protocol (LMRP) 

 

Across all sites, LMRP consistently outperformed GA and PSO in reducing path loss, as 

shown in Table 8: 

Location GA (%) PSO (%) LMRP (%) 

L1 33.89 33.25 32.77 

L2 33.81 33.57 32.62 

L3 33.65 33.41 32.74 

 

The reduced path loss under LMRP demonstrates its superior ability to select energy-

efficient, short-hop routes even in the presence of environmental and channel-induced 

interference. Figures 8–10 illustrate the convergence behavior of LMRP under various node 

distributions, reinforcing its robustness. 

 

4.2 Energy Efficiency and Node Lifetime 

Energy depletion rates were evaluated using voltage discharge curves from TelosB nodes 

under multi-hop routing conditions. As presented in Table 5 and visualized in Fig. 11, the 

LMRP scheme enabled smoother battery discharge and minimized peak drain events. 

Comparative analysis of energy usage showed that: 

● LMRP sustained communication for up to 26 minutes without node dropout. 
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● Equalized multi-hop transmission distances (normalized over deployment area) led to 

balanced energy depletion across all participating nodes. 

● The LMRP's awareness of crossover distances resulted in optimal hop selection, 

reducing unnecessary retransmissions and channel contention. 

 

This improved energy balance is essential for long-term PLC network deployments in 

mission-critical edge environments, such as industrial monitoring or remote agricultural 

systems. 

 

4.3 Frequency Impact: mmWave vs Sub-6 GHz 

An additional evaluation considered the impact of operating frequency on PL and reliability. 

Simulations compared mmWave-based IoT-PLC transmissions (e.g., 28 GHz) with sub-6 

GHz Wi-Fi devices. Results indicated: 

● mmWave devices, though prone to higher free-space PL, achieved lower overall 

signal degradation when used with narrow-beam directional antennas. 

● Wi-Fi-based PLC nodes experienced greater propagation losses at higher distances, 

leading to higher retransmission rates and congestion. 

 

This suggests that future SPLCN deployments may benefit from hybrid configurations—

utilizing mmWave for short-range, high-density clusters and sub-6 GHz for longer-range, 

lower-bandwidth links. 

 

4.4 Throughput and Latency Comparisons 

Routing performance was benchmarked using standard application-layer IoT protocols. 

Throughput and latency were assessed during 1500-packet edge-to-sink transmissions under 

both static and dynamic node configurations. The following were observed: 

Throughput Results (Table 9): 

Protocol Throughput (Bytes/sec) 

REST 8.70% 

CoAP 26.09% 

MQTT 21.74% 

LMRP 43.47% 
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LMRP achieved the highest throughput due to its reduced overhead, effective congestion 

avoidance, and minimized retransmissions. Fig. 16 further illustrates the superior scalability 

of LMRP as node density increases. 

 

Latency Results (Table 10): 

Protocol Latency (sec) 

CoAP 19.74% 

AMQP 21.37% 

REST 22.51% 

MQTT 13.05% 

XMPP 20.06% 

LMRP 3.04% 

 

Latency was measured as time-to-converge during data stream propagation. LMRP’s 

significantly lower latency (Fig. 17) underscores its efficiency in establishing fast, reliable 

paths even under node churn or network reconfiguration. 

 

4.5 Reliability and Noise Tolerance 

The reliability of each scheme was evaluated using Middleton’s Class A model for impulsive 

noise. Each protocol's capacity to maintain accurate transmission in the presence of impulse 

spikes was tested. Reliability scores were as follows (Table 11): 

Protocol Reliability (%) 

CoAP 37.04 

MQTT 46.29 

LMRP 83.33 

 

LMRP’s inherent filtering capability, which acts as an impulsive noise suppression 

mechanism, results in superior error resilience and channel stability. Figure 18 illustrates the 

comparative drop in packet loss spikes under LMRP routing. 

 

4.6 Computational Complexity 

To evaluate scalability and resource overhead, computational complexity was benchmarked 

using Big-O analysis. LMRP was compared to conventional RPL and CQARPL algorithms 

under increasing edge node density (Fig. 19). The results: 
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Protocol Complexity (%) 

RPL 41.07 

CQARPL 50.00 

LMRP 8.93 

 

This shows that LMRP’s autoscaling and MCFP-based routing logic achieves an order-of-

magnitude reduction in processing overhead. This low complexity makes LMRP suitable 

for devices with limited memory and CPU capabilities. 

 

5. Conclusion and Future Work 

5.1 Summary of Contributions 

This study introduces a comprehensive solution for reliable, scalable, and energy-efficient 

communication in PLC-enabled edge computing environments through the development of 

the Lightweight Multi-Hop Routing Protocol (LMRP). Leveraging a layered SPLCN 

architecture, the protocol addresses the shortcomings of existing IPv6-RPL-based strategies 

by integrating optimized routing, energy modeling, and impulsive noise resilience within a 

deterministic, real-time framework. 

The main contributions of the work are as follows: 

1. Design of the SPLCN Framework: A four-layer edge-to-cloud architecture 

integrating smart power pools, fog buffering, and resilient cloud backbones for 

scalable IoT deployments. 

2. Routing via Minimum Cost Flow Formulation: A mathematical foundation for 

cost-efficient and energy-aware route determination under dynamic network 

conditions. 

3. K-Shortest Path and Node Lifetime Models: Introduction of lightweight algorithms 

for path selection and battery conservation tailored to resource-constrained devices. 

4. Empirical Validation using TelosB-RPI Testbeds: Deployment across indoor and 

outdoor locations with performance benchmarking against established optimization 

algorithms (GA and PSO). 

5. Comparative Performance Evaluation: Demonstration that LMRP consistently 

outperforms conventional schemes across key metrics—path loss, latency, 

throughput, reliability, and computational complexity. 
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LMRP achieved up to 76.3% improvement in routing efficiency, reduced path loss to 

32.62%, and lowered latency and computational overhead to 3.04% and 8.93%, 

respectively—surpassing REST, MQTT, CoAP, AMQP, and XMPP-based solutions. Its low-

complexity design and energy-aware structure make it well-suited for scalable deployment in 

smart grids, autonomous vehicles, and industrial monitoring systems. 

 

5.2 Practical Applications 

The proposed LMRP and SPLCN framework have high applicability in several domains: 

● Autonomous Transportation: LMRP’s real-time responsiveness and PL resilience 

support reliable routing for driverless vehicles operating in dynamic urban 

environments. 

● Smart Grids: With robust power line reuse and low-latency data exchange, SPLCN 

offers a cost-effective solution for wide-area energy monitoring and fault diagnostics. 

● Industrial IoT: The lightweight and adaptive nature of LMRP facilitates deployment 

in constrained factory floors and remote automation sites. 

● Environmental Monitoring: LMRP enables scalable, battery-efficient, and fault-

tolerant sensor deployments in remote terrains using existing power line 

infrastructure. 

 

Moreover, the framework aligns with 5G/6G objectives of massive machine-type 

communication (mMTC), making it a viable candidate for inclusion in future network 

standards. 

 

5.3 Future Research Directions 

While the proposed architecture and routing protocol demonstrate promising results, further 

research is warranted in the following areas: 

1. Containerized Deployment in Autonomous Systems Integration of LMRP into 

containerized  platforms  such as Kubernetes for connected vehicles, enabling 

microservice-based routing orchestration. 

2. AI-Driven Edge Analytics Deployment of Spiking Neural Networks (SNNs) for on-

device pattern recognition, anomaly detection, and predictive routing based on time-

series PL fluctuations. 
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3. Access Control and Security Integration Development of lightweight access control 

models compatible with LMRP, potentially incorporating blockchain or zero-

knowledge proofs to secure PLC data channels. 

4. Hybrid Multi-Radio PLC Systems 

 Exploration of SPLCN interoperability with mmWave, Wi-Fi 6, and sub-GHz 

protocols for adaptive routing across heterogeneous edge interfaces. 

 

5. Real-Time Middleware Enhancements 

 Extension of MQTT, CoAP, and AMQP modules to support routing-aware 

middleware functionalities, including fault prediction, QoS scheduling, and mobility 

support. 

 

6. Long-Term Deployment Studies 

 Extended field trials in smart cities and industrial zones to evaluate the performance 

of LMRP over months and across varying climatic and infrastructural conditions. 
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